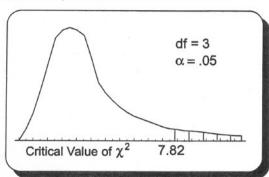
Chapter 20 Nonparametric Hypothesis Testing of Nominal Data

I. Introduction

- A. Parametric statistics is the name given to much of the material covered through chapter 19.
 - 1. Parametric tests involve a population parameter for which the test statistic has a known distribution (shape).
 - 2. Measurement (data) sophistication is of an interval or ratio level. (see page 2)
- B. Nonparametric statistics are used when the requirements of parametric statistics are not fulfilled.
 - 1. Data is considered distribution-free because the distribution of the sample statistic may be unknown.
 - 2. Nominal and ordinal data can be tested.
- C. Count data (categorical data)
 - 1. In this chapter, sample observations (counts) are grouped into categories and compared to some expected count (frequency). A small difference between the actual and expected frequencies indicates a match.
 - 2. Applications
 - a. Determining brand preference by age, gender, etc.
 - Measuring the success of an advertising campaign or training program.
- D. The chi-square distribution (pronounced "kigh" square)
 - The chi-square distribution is like the t distribution because there is a family of curves, one for each degree of freedom.
 - 2. The distribution becomes more normal as the degrees of freedom increase. Chi-square is the ratio of $(n-1)s^2$ to σ^2 .



II. Goodness of fit tests for a one categorical variable

- A. Linda is interested in determining if consumers at her four stores are giving equal acceptance to the low sales price of a new hit music video.
- B. The 5-step approach to hypothesis testing
 - 1. Ho: sales are equally distributed

H₁: sales are not equally distributed

Music Video Sales	Store A	Store B	Store C	Store D	Totals
Sample sales, f ₀	8	22	19	11	60
Expected sales, f _e	15	15	15	15	60

- 2. The significance level is .05.
- 3. Chi-square is the test statistic.

$$\chi^2 = \sum \left[\frac{(f_0 - f_e)^2}{f_e} \right]$$

- 4. The decision rule:
 - If χ^2 from the test statistic is beyond the critical value, the difference is high and the null hypothesis is rejected.
- Apply the decision rule for this one-tail test.

Store	f _o	f _e	$f_0 - f_e$	$(f_0-f_e)^2$	$\frac{(f_0 - f_e)^2}{f_e}$	
Α	8	15	-7	49	49/15 = 3.27	
В	22	15	7	49	49/15 = 3.27	
С	19	15	4	16	16/15 = 1.07	
D	11	15	<u>-4</u>	16	16/15 = 1.07	
			0		$\chi^2 = 8.68$	

df = k - 1 = 4 - 1 = 3
$$\rightarrow \chi$$
 = 7.82
Reject H₀ because 8.68 > 7.82.
Sales are not equally distributed.

- fo is an observed frequency of a category.
- f_e is an expected frequency of a category. It should be ≥ 5 when using the continuous chi-square distribution for a discrete problem.

Equal acceptance means $f_e = 60/4 = 15$.

k is the number of categories.

There are k - 1 degrees of freedom for a goodness of fit problem.

Chi-Square								
Degrees	Right-tail area							
of freedom	.10	.05	.025	.01	.005			
1	2.71	3.84	5.02	6.64	7.88			
2	4.61	5.99	7.38	9.21	10.60			
3	6.25	7.82	9.35	11.35	12.84			
4	7.78	9.49	11.14	13.28	14.86			
5	9.24	11.07	12.83	15.09	16.75			

Page ST 6 has a more complete chi-square table.

Note: This procedure can be used to test unequal expected frequencies. Suppose Store A usually has 40% of company sales and the 3 other stores each have 20%. Store A would be expected to have 24 sales $(.40 \times 60)$ and the other stores would be expected to have 12 sales $(.20 \times 60)$. Note: Opinions vary on the exact lower limit for f_a .